- Major publications and presentations from FY 2017 to the present

Takahashi Lab. Takamiya Lab. Kawakatsu Lab. Toshiyoshi Lab.
Kim Lab. Mizoguchi Lab. Nomura Lab. Tixier-Mita Lab.
Tochigi Lab. Matsuhisa Lab.

[Takahashi Lab.]
  1. Tomoe Kuroiwa, Ryota Ishibashi, and Takuji Takahashi, "Time-resolved Photo-assisted Kelvin Probe Force Microscopy on Cu(In,Ga)Se2 Solar Cells", Japanese Journal of Applied Physics, 61 SL1004 (2022).
  2. Ryota Fukuzawa, Jianbo Liang, Naoteru Shigekawa, and Takuji Takahashi, "Quantitative capacitance measurements in frequency modulation electrostatic force microscopy", Japanese Journal of Applied Physics, 61 SL1005 (2022).
  3. Ryota Fukuzawa and Takuji Takahashi, "Peak-tracking scanning capacitance force microscopy with multibias modulation technique", Measurement Science and Technology, 33, 065405 (2022).
  4. Daichi Kobayshi, Naoteru Shigekawa, Jianbo Liang, and Takuji Takahashi, "Dual Bias Modulation Electrostatic Force Microscopy on n-type Si/Si Junctions Fabricated by Surface-activated Bonding", The 22nd International Vacuum Congress, Tue-C2-3, Sapporo, Japan, September (2022).
  5. Ayaka Yamada and Takuji Takahashi, "Investigation of Cs Treatment Effect on Cu(In,Ga)(S,Se)2 Solar Cell from Non-radiative Recombination Distribution under Various Photoexcitation Conditions Using Photothermal Atomic Force Microscopy", the 49th IEEE Photovoltaic Specialists Conference, Philadelpia, U.S.A., June (2022).
  6. Ayaka Yamada and Takuji Takahashi, "Multi-pulse Modulation Method in Photothermal Atomic Force Microscopy for Variable Frequency Modulation of Incident Light", Japanese Journal of Applied Physics, 60, SE1003 (2021).
  7. Takuji Takahashi, "Time-resolved Photovoltaic Measurements by Photo-assisted Kelvin Probe Force Microscopy", The 4th International Symposium on "Elucidation of Property of Next Generation Functional Materials and Surface/Interface", 60, Online, Oct. (2021). [Invited]
  8. Ryota Fukuzawa and Takuji Takahashi, "Dual Bias Modulation Electrostatic Force Microscopy on Cu(In,Ga)Se2", Proceedings of 47th IEEE Photovoltaic Specialists Conference (PVSC 47), 0394-0396 (2020).
  9. Ryota Fukuzawa and Takuji Takahashi. "Direct Imaging Method of Frequency Response of Capacitance in Dual Bias Modulation Electrostatic Force Microscopy", Japanese Journal of Applies Physics, 59, 078001 (2020).
  10. Ryota Fukuzawa and Takuji Takahashi, "Development of Dual Bias Modulation Electrostatic Force Microscopy for Variable Frequency Measurements of Capacitance", Review of Scientific Instruments, 91, 023702 (2020).
  11. Hyeondeuk Yong, Takashi Minemoto, and Takuji Takahashi, "Photovoltage Decay Measurements by Photo-Assisted Kelvin Probe Force Microscopy on Cu(In,Ga)Se2 Solar Cells", IEEE Journal of Photovoltaics, 9, 483-491 (2019).
  12. Hyeondeuk Yong, Takashi Minemoto, and Takuji Takahashi, "Dependence of Photovoltage on Incident Photon Energies Investigated by Photo-assisted Kelvin Probe Force Microscopy on Cu(In,Ga)Se2 Solar Cells", Proceedings of the 7th Edition of the World Conference on Photovoltaic Energy Conversion (WCPEC-7) (2018).
  13. Takuji Takahashi, "Photo-assisted Kelvin Probe Force Microscopy on Cu(In,Ga)Se2 Solar Cells", The 3rd international symposium on "Recent Trends in Elucidation and Function Discovery on Next Generation Functional Materials - Surface/Interface Properties", S25, Osaka, Japan, June (2018). [Invited]
  14. Tomoaki Ishii, Takashi Minemoto, and Takuji Takahashi, "Local Measurements of Surface Capacitance by Electrostatic Force Microscopy on Cu(In,Ga)Se2 Materials", Proceedings of 44th IEEE Photovoltaic Specialists Conference (PVSC-44), 0455-0458 (2017).
  15. Takuji Takahashi, "Photo‐assisted Scanning Probe Microscopies on Solar Cell Materials", The 2nd International Symposium on "Recent Trends in Analysis Techniques for Functional Materials and Devices", 29, Osaka, Japan, January (2017). [Invited]

[Takamiya Lab.]
  1. H. Qiu, T. Sakurai, and M. Takamiya, "A 6.78-MHz Multiple-Transmitter Wireless Power Transfer System With Efficiency Maximization by Adaptive Magnetic Field Adder IC", IEEE Journal of Solid-State Circuits, 57, 2390-2403 (2022).
  2. H. Yamasaki, K. Hata, and M. Takamiya, "Estimation of Both Junction Temperature and Load Current of IGBTs from Output Voltage of Gate Driver", International Power Electronics Conference (IPEC-Himeji 2022 -ECCE Asia-), 453-460, Himeji, Japan, May (2022).
  3. K. Horii, K. Hata, R. Wang, W. Saito, and M. Takamiya, "Large Current Output Digital Gate Driver Using Half-Bridge Digital-to-Analog Converter IC and Two Power MOSFETs", IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), 293–296, Vancouver, Canada, May (2022).
  4. K. Horii, R. Morikawa, R. Katada, K. Hata, T. Sakurai, S. Hayashi, K. Wada, I. Omura, and M. Takamiya, "Equalization of DC and Surge Components of Drain Current of Two Parallel-Connected SiC MOSFETs Using Single-Input Dual-Output Digital Gate Driver IC", IEEE Applied Power Electronics Conference and Exposition (APEC), 1406-1412, Houston, USA, March (2022).
  5. K. Hata, S. Suzuki, and M. Takamiya, "Dual-Path Hybrid Synchronous Rectifier in Active Clamp Forward Converter for Inductor Current Reduction", IEEE Applied Power Electronics Conference and Exposition (APEC), 1011-1015, Houston, USA, March (2022).
  6. H. Qiu, Y. Jiang, Y. Shi, T. Sakurai, and M. Takamiya, "Analysis and Mitigation of Coupling-Dependent Data Flipping in Wireless Power and Data Transfer System", IEEE Transactions on Circuits and Systems―I: Regular Papers, 69, 5182-5193 (2021).
  7. R. Katada, K. Hata, Y. Yamauchi, T. -W. Wang, R. Morikawa, C. -H. Wu, T. Sai, P. -H. Chen, and M. Takamiya, "Digital Gate Driving (DGD) is Double-Edged Sword: How to Avoid Huge Voltage Overshoots Caused by DGD for GaN FETs", IEEE Energy Conversion Congress & Exposition (ECCE), 5412-5416, Virtual, Oct. (2021).
  8. Y. Yamauchi, T. Sai, K. Hata, and M. Takamiya, "0.55 W, 88%, 78 kHz, 48 V-to-5 V Fibonacci Hybrid DC–DC Converter IC Using 66 mm3 of Passive Components With Automatic Change of Converter Topology and Duty Ratio for Cold-Crank Transient", IEEE Transactions on Power Electronics, 36, 9273-9284 (2021).
  9. H. Qiu and M. Takamiya, "A 6.78 MHz Wireless Power Transfer System for Simultaneous Charging of Multiple Receivers with Maximum Efficiency using Adaptive Magnetic Field Distributor IC", IEEE Symposium on VLSI Circuits, 1-2, Virtual, June (2021).
  10. H. Qiu, T. Sakurai, and M. Takamiya, "Digital Transmitter Coil for Wireless Power Transfer Robust Against Variation of Distance and Lateral Misalignment", IEEE Transactions on Microwave Theory and Techniques, 68, 4031-4039 (2020).

[Kawakatsu Lab.]
  1. Pierre Etienne Allain, Denis Damiron, Yuta Miyazaki, Kohei Kaminishi, Flavius Vasile Pop, Dai Kobayashi, Naruo Sasaki, Hideki Kawakatsu, "Color atomic force microscopy: A method to acquire three independent potential parameters to generate a color image", Applied Physics Letters, 123104, (2017).
  2. H. Kawakatsu, "Colour Atomic Force Microscopy -tip and relaxation issues", in Abs. Of NanoGoa Nanoscale effects in Macrotribology, Goa, India. (2018).
  3. H. Nishizawa,P.E. Allain, D. Damiron, H. Osawa, D. Kobayashi, N. Sasaki and, H. Kawakatsu, "Relaxation Observed in Colour AFM Imaging", in Abs of ICSPM 25, Atagawa, Japan (2017).
  4. H. Nishizawa, P.E. Allain, D. Damiron, D. Kobayashi, N. Sasaki, H. Kawakatsu, "Effect of Tip Functionalisation on the Effective Morse Paramaters in Colour AFM", in Abs of ICSPM 25, Atagawa, Japan (2017).
  5. H. Nishizawa, D. Kobayashi, and H. Kawakatsu, "Photothermal vibration excitation by an intensity modulated optical lever", in Abs of ICSPM 25, Atagawa, Japan (2017).
  6. H. Nishizawa, S. Hen, P.E.Allain, D. Damiron, H. Otsubo, D. Kobayashi, N. Sasaki, and H. Kawakatsu, "Simulation of Probe Sharpened with Molecular Modification for Colour Atomic Force Microscopy", in Abs of ISSSJ8, Tsukuba, Japan (2017).
  7. X.Q. Bian, H. Nishizawa, H. Osawa, D. Damiron, P.E.Allain, D. Kobayashi, N. Sasaki and H. Kawakatsu, "Color Atomic Force Microsocpy- The Image Analysis and compensation of relaxation", in Abs of ISSSJ8, Tsukuba, Japan (2017).

[Toshiyoshi Lab.]
  1. Mohammed S. Khan, Changdae Keum, Yi Xiao, Keiji Isamoto, Nobuhiko Nishiyama, and Hiroshi Toshiyoshi, "MEMS-VCSEL as a tunable light source for OCT imaging of long working distance", J. Opt. Microsyst., 1, 034503 (2021).
  2. Spyridon Bakas, Deepak Uttamchandani, Hiroshi Toshiyoshi, and Ralf Bauer, "MEMS enabled miniaturized light-sheet microscopy with all optical control", Scientific Reports, 11, 14100, (2021).
  3. Tomotaka Asari, Mamoru Miyachi, Yutaro Oda, Takaaki Koyama, Hiroaki Kurosu, Makoto Sakurai, Masanao Tani, Yoshiaki Yasuda, and Hiroshi Toshiyoshi, "Adaptive Driving Beam System with MEMS Optical Scanner for Reconfigurable Vehicle Headlight", SPIE J. Optical Microsystems, 1, 014501-1~9 (2021).
  4. Toru Nakanishi, Takeshi Miyajima, Kenta Chokawa, Masaaki Araidai, Hiroshi Toshiyoshi, Tatsuhiko Sugiyama, Gen Hashiguchi, and Kenji Shiraishi, "Negative-charge-storing mechanism of potassium-ion electrets used for vibration-powered generators: Microscopic study of a-SiO2 with and without potassium atoms", Applied Physics Letters, 117, 193902 (2020).
  5. Wan-Ting Chiu, Tso-Fu Mark Chang, Masato Sone, Agnès Tixier-Mita, and Hiroshi Toshiyoshi, "Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose", Talanta, 212, 120780 (2020).
  6. Vivek Menon, Matthieu Denoual, Hiroshi Toshiyoshi, and Hiroyuki Fujita, "Self-contained on-chip fluid actuation for flow initiation in liquid cell transmission electron microscopy", Japanese Journal of Applied Physics (Rapid Communication), 58, 090909 (2019).
  7. Hiroaki Honma, Yukiya Tohyama, Hiroyuki Mitsuya, Gen Hashiguchi, Hiroyuki Fujita, and Hiroshi Toshiyoshi, "A Power-Density-Enhanced MEMS Electrostatic Energy Harvester with Symmetrized High-Aspect Ratio Comb Electrodes", J. Micromech. Microeng., 29, 084002 (2019).
  8. Hiroshi Toshiyoshi, Suna Ju, Hiroaki Honma, Chang-Hyeon Ji, and Hiroyuki Fujita, "MEMS vibrational energy harvesters", Sci. Techno. Adv. Mater., 20, 124-143 (2019).
  9. Masahide Goto, Yuki Honda, Toshihisa Watabe, Kei Hagiwara, Masakazu Nanba, Yoshinori Iguchi, Takuya Saraya, Masaharu Kobayashi, Eiji Higurashi, Hiroshi Toshiyoshi, and Toshiro Hiramoto, "Quarter Video Graphics Array Digital-Pixel Image Sensing with Linear and Wide-Dynamic-Range Response Using Pixel-Wise 3D Integration", IEEE Transactions on Electron Devices, 66, 969-975 (2019).
  10. Shunsuke Yamada and Hiroshi Toshiyoshi, "A Water Dissolvable Electrolyte with Ionic Liquid for Eco-friendly Electronics", Small, 21 1800937 (2018).
  11. Sungho Jeon and Hiroshi Toshiyoshi, "MEMS tracking mirror system for bidirectional free-space optical link", Applied Optics, 56, 6720-6727 (2017).
  12. Shunsuke Yamada, Takaaki Sato, and Hiroshi Toshiyoshi, "A pressure sensitive ionic gel FET for tactile sensing", Applied Physics Letters, 110, 253501-1~4 (2017).
  13. Kota Ito, Kazutaka Nishikawa, Atsushi Miura, Hiroshi Toshiyoshi, and Hideo Iizuka, "Dynamic modulation of radiative heat transfer beyond the blackbody limit", ACS Nano Letters, 17, 4347-4353 (2017).

[Kim Lab.]
  1. Leilei Bao, Jongho Park, Boyu Qin, and Beomjoon Kim, "Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay", Scientific Reports, 12, 10693, (2022).
  2. Xiaobin Wu, Jongho Park, Siu Yu A. Chow, Maria Carmelita Z. Kasuya, Yoshiho Ikeuchi, and Beomjoon Kim, "Localised light delivery on melanoma cells using optical microneedles", Biomedical Optics Express, 13, 1045-1060 (2022).
  3. Kai Takeuchi, Nobuyuki Takama, Kirti Sharma, Oliver Paul, Patrick Ruther, Tadatomo Suga, and Beomjoon Kim, "Microfluidic chip connected to porous microneedle array for continuous ISF sampling", Drug Delivery and Translational Research, 12, 435-443 (2022).
  4. Leilei Bao, Jongho Park, Gwenael Bonfante, and Beomjoon Kim, "Recent advances in porous microneedles: materials, fabrication, and transdermal applications", Drug Delivery and Translational Research, 12, 395-414 (2021).
  5. Libo Wu, Jongho Park, Yuto Kamaki, and Beomjoon Kim, "Optimisation of fused deposition modelling based fabrication process for polylactic acid microneedles", Microsystems & Nanoengineering, 7, 58 (2021).
  6. Dan-Liang Wen, De-Heng Sun, Peng Huang, Wen Huang, Meng Su, Ya Wang, Meng-Di Han, Beomjoon Kim, Jürgen Brugger, Hai-Xia Zhang, and Xiaosheng Zhang, "Recent Progress on Silk Fibroin-Based Flexible Electronics", Microsystems & Nanoengineering, 7, 35 (2021).
  7. Hai-Tao Deng, Xin-Ran Zhang, Zhi-Yong Wang, Dan-Liang Wen, Yan-Yuan Ba, Beomjoon Kim, Meng-Di Han, Hai-Xia Zhang, and Xiao-Sheng Zhang, "Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite", Nano Energy, 83, 105823 (2021).
  8. D. Decanini, A. Harouri, Y. Mita, B.J. Kim, and G. Hwang, "3D micro fractal pipettes for capillary based robotic liquid handling", Review of Scientific Instruments, 91, 086104 (2020).
  9. Meng Su and Beomjoon Kim, "Silk Fibrion-Carbon Nanotube Composites based Fiber Substrated Wearable Triboelectric Nanogenerator", ACS Applied Nano Materials, 3, 9759-9770 (2020).
  10. Kai Takeuchi, Nobuyuki Takama, Rie Kinoshita, Teru Okitsu, and Beomjoon Kim, "Flexible and porous microneedles of PDMS for continuous glucose monitoring", Biomedical Microdevices, 22, 79 (2020).
  11. Hakjae Lee, Gwenael Bonfante, Yui Sasaki, Nobuyuki Takama, Tsuyoshi Minami and Beomjoon Kim, "Porous microneedles on a paper for screening test of prediabetes", Medical Devices and Sensors, 3, e10109 (2020).
  12. Gwenaël Bonfante, Hakjae Lee, Leilei Bao, Jongho Park, Nobuyuki Takama, and Beomjoon Kim, "Comparison of Polymers to enhance mechanical properties of microneedles for bio-medical applications", Micro and Nano Systems Letters, 8, 13 (2020).
  13. Libo Wu, Pranav Shrestha, Martina Iapichino, Yicheng Cai, BeomJoon Kim, and Boris Stoeber, "Characterization Method for Calculating Diffusion Coefficient of Drug from Polylactic Acid (PLA) Microneedles into The Skin", Journal of Drug Delivery Science and Technology, 61, 102192 (2021).
  14. M. Su, J. Brugger, and BJ Kim, "Wearable Triboelectric Generator based on a Hybrid Mix of Carbon Nanotube and Polymer Layers", Journal of Physics: Conference Series, 1407, 012047 (2019).
  15. Meng Su, Jürgen Brugger, and Beomjoon Kim, "Simply structured wearable triboelectric nanogenerator based on a hybrid composition of carbon nanotubes and polymer layer", Int. Journal of Precision Engineering and Manufacturing-Green Technology, 7, 683-698 (2020).

[Mizoguchi Lab.]
  1. K. Kikumasa, S. Kiyohara, K. Shibata, and T. Mizoguchi, "Quantification of the Properties of Organic Molecules Using Core-Loss Spectra as Neural Network Descriptors", Advanced Intelligent Systems, 4, 2100103-1-10 (2022).
  2. K. Nakazawa, Y. Tsukada, S. Amma, K. Shibata, and T. Mizoguchi, "Multimetastability effect on the intermediate stage of phase separation in BaO-SiO2 glass", Phys. Rev. Res., 4, 033052-1-8 (2022).
  3. K. Shibata, K. Kikumasa, S. Kiyohara, and T. Mizoguchi, "Simulated carbon K edge spectral database of organic molecules", Scientific Data, 9, 214-1-11 (2022).
  4. K. Liao, K. Shibata,and T. Mizoguchi, "Nanoscale Investigation of Local Thermal Expansion at SrTiO3 Grain Boundaries by Electron Energy Loss Spectroscopy", Nano Letters, 21, 10416-10422 (2021).
  5. I. Takahara and T. Mizoguchi, "First principles study on formation and migration energies of sodium and lithium in graphite", Phys. Rev. Mater., 5, 085401-1-7 (2021).
  6. K. Liao, A. Masuno, A. Taguchi, H. Moriwake, H. Inoue, and T. Mizoguchi, "Revealing Spatial Distribution of Al-Coordinated Species in a Phase-Separated Aluminosilicate Glass by STEM-EELS", J. Phys. Chem. Lett., 11, 9637-9642 (2020).
  7. S. Kiyohara, M. Tsubaki, and T. Mizoguchi, "Learning excited states from ground states by using an artificial neural network", npj Comp. Mater., 6, 68-1-6 (2020).
  8. K. Nakazawa, S. Amma, and T. Mizoguchi, "In situ observation of the dynamics in the middle stage of spinodal decomposition of a silicate glass via scanning transmission electron microscopy", Acta Mater., 200, 720-726 (2020).
  9. K. Liao, M. Haruta, A. Masuno, H. Inoue, H. Kurata, and T. Mizoguchi, "Real-Space Mapping of Oxygen Coordination in Phase-Separated Aluminosilicate Glass: Implication for Glass Stability", ACS Applied Nano Materials, 3, 5053-5060 (2020).
  10. S. Kiyohara, M. Tsubaki, Kunyen Liao, and T. Mizoguchi, "Quantitative estimation of properties from core-loss spectrum via neural network", J. Phys.: Materials, 2, 024003-1-9 (2019).
  11. H. Oda, S. Kiyohara and T. Mizoguchi, "Machine learning for structure determination and investigating the structure-property relationships of interfaces", J. Phys.: Materials, 2, 034005-1-8 (2019).
  12. K. Kiyohara, T. Miyata, K. Tsuda, and T. Mizoguchi, "Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy", Scientific Reports, 8, 13548-1-12 (2018).
  13. S. Kiyohara and T. Mizoguchi, "Searching the stable segregation configuration at the grain boundary by a Monte Carlo tree search", J. Chem. Phys., 148, 241741-1-6 (2018).
  14. T. Miyata, F. Uesugi, and T. Mizoguchi, "Real-space analysis of diffusion behavior and activation energy of individual monatomic ions in a liquid", Science Advances, 3, e1701546-1-5 (2017).
  15. H. Katsukura, T. Miyata, M. Shirai, H. Matsumoto, and T. Mizoguchi, "Estimation of the molecular vibration of gases using electron microscopy", Scientific Reports, 7, 16434-1-9 (2017).

[Nomura Lab.]
  1. M. Nomura, R. Anufriev, Z. Zhang, J. Maire, Y. Guo, R. Yanagisawa, and S. Volz, "Review of thermal transport in phononic crystals", Mater. Today Phys., 22, 100613 (2022). [Invited review]
  2. T. Sato, Z. Milne, M. Nomura, N. Sasaki, R. Carpick, and H. Fujita, "Ultrahigh Strength and Shear-Assisted Separation of Sliding Nanocontacts Studied in situ", Nat. Commun., 13, 2551 (2022).
  3. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, "Heat conduction theory including phonon coherence", Phys. Rev. Lett., 128, 015901 (2022).
  4. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, "How coherence is governing diffuson heat transfer in amorphous solids", npj Comput Mater., 8, 96 (2022).
  5. R. Anufriev, Y. Wu, J. Ordonez-Miranda, and M. Nomura, "Nanoscale limit of the thermal conductivity in crystalline silicon carbide membranes, nanowires, and phononic crystals", NPG Asia Mater., 14, 35 (2022).
  6. R. Anufriev, J. Maire, and M. Nomura, "Review of coherent heat and phonon transport control in one-dimensional phononic crystals", APL Mater., 9, 070701 (2021). [Invited Review]
  7. Y. Wu, J. Ordonez-Miranda, S. Gluchko, R. Anufriev, D. De Sousa Meneses, L. Del Campo, S. Volz, and M. Nomura, "Enhanced thermal conduction by surface phonon-polaritons", Science Advances, 6, eabb4461 (2020).
  8. R. Anufriev and M. Nomura, "Ray phononics: Thermal guiding, emission, and shielding using ballistic phonon transport", Mater. Today Phys., 15, 100272 (2020).
  9. X. Huang, D. Ohori, R. Yanagisawa, R. Anufriev, S. Samukawa, and M. Nomura, "Coherent and incoherent impacts of nanopillars on the thermal conductivity in silicon nanomembranes", ACS Appl. Mater. Interfaces, 12, 25478 (2020).
  10. X. Huang, S. Gluchko, R. Anufriev, S. Volz, and M. Nomura, "Thermal conductivity reduction in silicon thin film with nanocones", ACS Appl. Mater. Interfaces, 11, 34394 (2019).
  11. R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, "Probing ballistic thermal conduction in segmented silicon nanowires", Nanoscale, 11, 13407 (2019).
  12. R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, "Quasi-ballistic heat conduction due to levy phonon flights in silicon nanowires", ACS Nano, 12, 11928 (2018).
  13. M. Nomura, J. Shiomi, T. Shiga, and R. Anufriev, "Thermal phonon engineering by tailored nanostructures", Jpn. J. Appl. Phys., 57, 080101 (2018). [Invited Review]
  14. J. Maire, R. Anufriev, A. Ramiere, R. Yanagisawa, S. Volz, and M. Nomura, "Heat conduction tuning by wave nature of phonons", Science Advances, 3, e1700027 (2017).
  15. R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, "Heat guiding and focusing using ballistic phonon transport in phononic nanostructures", Nature Communications, 8, 15505 (2017).

[Tixier-Mita Lab.]
  1. Faruk Azam Shaik, Grant Alexander Cathcart, Satoshi Ihida, Yoshiho Ikeuchi, Agnès Tixier-Mita and Hiroshi Toshiyoshi, "Electrical Stimulation, Recording and Impedance-Based Real-Time Position Detection of Cultured Neurons Using Thin-Film-Transistor Array", Journal of Micromechanical Systems, pp. 1-10 (2018).
  2. Daigo Terutsuki, Hidefumi Mitsuno, Takeshi Sakurai, Yuki Okamoto, Agnès Tixier-Mita, Hiroshi Toshiyoshi, Yoshio Mita, and Ryohei Kanzaki, "Increasing cell–device adherence using cultured insect cells for receptor-based biosensors", Royal Society Open Science, 5: 172366, pp. 1-13 (2018).
  3. Faruk Azam Shaik, Grant Cathcart, Satoshi Ihida, Myriam Lereau-Bernier, Eric Leclerc, Yasuyuki Sakai, Hiroshi Toshiyoshi and Agnès Tixier-Mita, "Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle", Journal of Micromechanics and Microengineering, 27, 054001 (2017).
  4. Damien Blanchard, Pierre-Marie Faure, Satoshi Ihida, Takashi Kohno, Hiroshi Toshiyoshi, Timothée Lévi and Agnès Tixier-Mita, "Stimulation/Control System for TFT Array Biosensor – Application to Dielectrophoresis", The 31st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2018), January, Belfast, U.K. (2018).
  5. Kentaro Yamada, Julien Grand, Yuki Okamoto, Reddy Ranga, Matthieu Denoual, Sveltana Mintova, Agnès Tixier-Mita, Yoshio Mita, "Impact Test for Gas Sensing Using Large Particle Size Zeolite", The 34th Sensor Symposium on Sensors, Micromachines and Applied Systems, October, Hiroshima, Japan (2017).
  6. Faruk Azam Shaik, Grant Alexander Cathcart, Satoshi Ihida, Agnès Tixier-Mita, and Hiroshi Toshiyoshi, "HepG2 Cells Patterning by EWOD on Thin-Film-Transistor Aarray Devices- An Aanalysis to Prevent Cell Death", The 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (MICROTAS 2017), M073d, October, Savannah, USA (2017).
  7. Grant Alexander Cathcart, Agnès Tixier-Mita, Satoshi Ihida, Faruk Azam Shaik, Hiroshi Toshiyoshi, "Simultaneous Optical and Electrical Monitoring of Cells on a Transparent Thin Film Transistor Array", The 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS' 2017), pp. 206-209, June, Kaohsiung, Taiwan (2017).
  8. Faruk Azam Shaik, Yoshiho Ikeuchi, Grant Cathcart, Satoshi Ihida, Hiroshi Toshiyoshi, Agnès Tixier-Mita, "Extracellular Neural Stimulation and Recording with a Thin-Film-Transistor (TFT) Array Device", The 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS' 2017), pp. 206-209, June, Kaohsiung, Taiwan (2017).

[Tochigi Lab.]
  1. Jiake Wei, Bin Feng, Eita Tochigi, Naoya Shibata, and Yuichi Ikuhara, “Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary”, Nature Communications, 13, 1455 (2022).
  2. Hiroaki Nakade, Eita Tochigi, Bin Feng, Ryo Ishikawa, Hiromichi Ohta, Naoya Shibata, and Yuichi Ikuhara, “Effect of annealing on grain growth and Y segregation behavior in tetragonal ZrO2 thin film”, Journal of the American Ceramic Society, 105, 2300-2308 (2022).
  3. Eita Tochigi, "Investigation of local mechanical responses in ceramic materials based on in situ TEM observations", MS&T2022, Pittsburgh, Pennsylvania, USA, Oct. 12, (2022). [Invited]
  4. Eita Tochigi, "Atomic-scale investigations of deformation and fracture behavior of ceramic materials", CIMTEC 2022, Perugia, Italy, Jun. 18, (2022). [Invited]
  5. Eita Tochigi, Bin Miao, Atsutomo Nakamura, Naoya Shibata, and Yuichi Ikuhara, “Atomic-scale mechanism of rhombohedral twinning in sapphire”, Acta Materialia, 216, 117137 (2021).
  6. Minjian Cao, Eita Tochigi, Ryusuke Imamura, Naoya Shibata, and Yuichi Ikuhara, “Ultraviolet light induced hardening in gallium nitride”, Journal of the Ceramic Society of Japan, 129, 329-331 (2021).
  7. Hiroaki Nakade, Eita Tochigi, Bin Feng, Yukio Nezu, Hiromichi Ohta, Naoya Shibata, and Yuichi Ikuhara, “Fabrication and characterization of tetragonal yttria-stabilized zirconia single-crystalline thin film”, Journal of the American Ceramic Society, 104, 1198-1203 (2021).
  8. Yang Chuchu, Bin Feng, Jiake Wei, Eita Tochigi, Saki Ishihara, Naoya Shibata, and Yuichi Ikuhara, “Atomic and electronic band structures of Ti-doped Al2O3 grain boundaries”, Acta Materialia, 201, 488-493 (2020).
  9. Young-Wook Kim, Eita Tochigi, Junichi Tatami, Yong-Hyeon Kim, Seung Hoon Jang, Srivani Javvaji, Jeil Jung, Kwang Kim, and Yuichi Ikuhara, "Carrier Depletion near the Grain Boundary of a SiC Bicrystal", Scientific Reports, 9, 18014 (2019).
  10. Shun Kondo, Akihito Ishihara, Eita Tochigi, Naoya Shibata, and Yuichi Ikuhara, "Direct observation of atomic-scale fracture path within ceramic grain boundary core", Nature Communications, 10, 2112 (2019).
  11. Bin Miao, Shun Kondo, Eita Tochigi, Jiake Wei, Bin Feng, Naoya Shibata, and Yuichi Ikuhara, "The core structure of 60 degrees mixed basal dislocation in alumina (α-Al2O3) introduced by in situ TEM nanoindentation", Scripta Materialia, 163, 157-161 (2019).
  12. Eita Tochigi, Atsutomo Nakamura, Naoya Shibata, and Yuichi Ikuhara, "Dislocation structures in low-angle grain boundaries of α-Al2O3", Crystals, 8, 133-1-14 (2018).
  13. Eita Tochigi, Teruyasu Mizoguchi, Eiji Okunishi, Atsutomo Nakamura, Naoya Shibata, and Yuichi Ikuhara, "Dissociation reaction of the 1/3<-1101> edge dislocation in α-Al2O3", Journal of Materials Science, 53, 8049-8058 (2018).
  14. Eita Tochigi, Yuki Kezuka, Akiho Nakamura, Atsutomo Nakamura, Naoya Shibata, and Yuichi Ikuhara, "Direct Observation of Impurity Segregation at Dislocation Cores in an Ionic Crystal", Nano Letters, 17, 2908-2912 (2017).
  15. Eita Tochigi, Hirofumi Matsuhata, Hirotaka Yamaguchi, Takashi Sekiguchi, Hajime Okumura and Yuichi Ikuhara, “Investigation of V-shaped extended defects in a 4H–SiC epitaxial film”, Philosophical Magazine, 97, 1-14 (2017).

[Matsuhisa Lab.]
  1. A. Abramson, C. T. Chan, Y. Khan, A. Mermin-Bunnell, N. Matsuhisa, R. Fong, R. Shad, W. Hiesinger, P. Mallick, S. S. Gambhir, and Z. Bao, "A flexible electronic strain sensor for the real-time monitoring of tumor regression", Science Advances, 8, eabn6550 (2022).
  2. Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu, J.-C. Lai, S. Niu, C. Xu, C.-C. Shih, C. Wang, H. Yan, L. Galuska, N. Prine, H.-C. Wu, D. Zhong, G. Chen, N. Matsuhisa, Y. Zheng, Z. Yu, Y. Wang, R. Dauskardt, X. Gu, J. B.-H. Tok, and Z. Bao, "High-brightness all-polymer stretchable LED with charge-trapping dilution", Nature, 603, 624-630 (2022).
  3. N. Matsuhisa, S. Niu, S. J. K. O’Neill, J. Kang, Y. Ochiai, T. Katsumata, H.-C. Wu, M. Ashizawa, G.-J. N. Wang, D. Zhong, X. Wang, X. Gong, R. Ning, H. Gong, I. You, Y. Zheng, Z. Zhang, J. B.-H. Tok, X. Chen, and Z. Bao, "High-frequency and intrinsically stretchable polymer diodes", Nature, 600, 246-252 (2021).
  4. J. Mun, Y. Ochiai, W. Wang, Y. Zheng, Y.-Q. Zheng, H.-C. Wu, N. Matsuhisa, T. Higashihara, J. B.-H. Tok, Y. Yun, and Z. Bao, "A design strategy for high mobility stretchable polymer semiconductors", Nature Communications, 12, 3572 (2021).
  5. W. Wang, S. Wang, R. Rastak, Y. Ochiai, S. Niu, Y. Jiang, P.K. Arunachala, Y. Zheng, J. Xu, N. Matsuhisa, X. Yan, S.-K. Kwon, M. Miyakawa, Z. Zhang, R. Ning, A. M. Foudeh, Y. Yun, C. Linder, J. B.-H. Tok, and Z. Bao, "Strain-insensitive intrinsically stretchable transistors and circuits", Nature Electronics, 4, 143-150 (2021).
  6. W. Li, N. Matsuhisa, Z. Liu, M. Wang, Y. Luo, P. Cai, G. Chen, F. Zhang, C. Li, Z. Liu, Z. Lv, W. Zhang, and X. Chen, "An on-demand plant-based actuator created using conformable electrodes", Nature Electronics, 4, 134-142 (2021).
  7. P. Cai, C. Wan, L. Pan, N. Matsuhisa, K. He, Z. Cui, W. Zhang, C. Li, J. Wang, J. Yu, M. Wang, Y. Jiang, G. Chen, and X. Chen, "Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures", Nature Communications, 11, 2183 (2020).
  8. I. You, D. Mackanic, N. Matsuhisa, J. Kang, J. Kwon, L. Beker, J. Mun, W. Suh, T.Y. Kim, J. B.-H. Tok, Z. Bao, and U. Jeong, "Artificial multimodal receptors based on ion relaxation dynamics", Science, 370, 961-965 (2020).
  9. L. Beker, N. Matsuhisa, I. You, S. R. A. Ruth, S. Niu, A. Foudeh, J. B.-H. Tok, X. Chen, and Z. Bao, "A bioinspired stretchable membrane-based compliance sensor", Proceedings of the National Academy of Sciences, 117, 11314-11320 (2020).
  10. D.G. Mackanic, Xuzhou Yan, Q. Zhang, N. Matsuhisa, Z. Yu, Y. Jiang, T. Manika, J. Lopez, H. Yan, K. Liu, X. Chen, Y. Cui, and Z. Bao, "Decoupling of Mechanical Properties and Ionic Conductivity in Supramolecular Lithium Ion Conductors", Nature Communications, 10, 1-11 (2019).
  11. S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A. S. Y. Poon, J. B.-H. Tok, X. Chen, and Z. Bao, "A wireless body area sensor network based on stretchable passive tags", Nature Electronics, 2, 361-368 (2019).
  12. N. Matsuhisa, X. Chen, Z. Bao, and T. Someya, "Materials and structural designs of stretchable conductors", Chemical Society Reviews, 48, 2946-2966 (2019).
  13. A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, and T. Someya, "Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes", Nature Nanotechnology, 12, 907 (2017).
  14. N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Ito, T. Yokota, D. Hashizume, and T. Someya, "Printable Elastic Conductors by in situ Formation of Silver Nanoparticles from Silver Flakes", Nature Materials, 16, 834-840 (2017).
  15. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, "Printable elastic conductors with a high conductivity for electronic textile applications", Nature Communications, 6, 7461 (2015).